|
Mathematics 2009
A note on additivity of polygamma functionsDOI: 10.2298/FIL1505063G Abstract: In the note, the functions $\abs{\psi^{(i)}(e^x)}$ for $i\in\mathbb{N}$ are proved to be sub-additive on $(\ln\theta_i,\infty)$ and super-additive on $(-\infty,\ln\theta_i)$, where $\theta_i\in(0,1)$ is the unique root of equation $2\abs{\psi^{(i)}(\theta)}=\abs{\psi^{(i)}(\theta^2)}$.
|