全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Anisotropic Singular Integrals in Product Spaces

DOI: 10.1007/s11425-010-4108-2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A_i$ for $i=1, 2$ be an expansive dilation, respectively, on ${\mathbb R}^n$ and ${\mathbb R}^m$ and $\vec A\equiv(A_1, A_2)$. Denote by ${\mathcal A}_\infty(\rnm; \vec A)$ the class of Muckenhoupt weights associated with $\vec A$. The authors introduce a class of anisotropic singular integrals on $\mathbb R^n\times\mathbb R^m$, whose kernels are adapted to $\vec A$ in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on $L^q_w(\mathbb R^n\times\mathbb R^m)$ with $q\in(1, \infty)$ and $w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)$ or on $H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)$ with $p\in(0, 1]$ and $w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)$. These results are also new even when $w=1$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133