全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Schemes over $\F_1$ and zeta functions

DOI: 10.1112/S0010437X09004692

Full-Text   Cite this paper   Add to My Lib

Abstract:

We determine the {\em real} counting function $N(q)$ ($q\in [1,\infty)$) for the hypothetical "curve" $C=\overline {\Sp \Z}$ over $\F_1$, whose corresponding zeta function is the complete Riemann zeta function. Then, we develop a theory of functorial $\F_1$-schemes which reconciles the previous attempts by C. Soul\'e and A. Deitmar. Our construction fits with the geometry of monoids of K. Kato, is no longer limited to toric varieties and it covers the case of schemes associated to Chevalley groups. Finally we show, using the monoid of ad\`ele classes over an arbitrary global field, how to apply our functorial theory of $\Mo$-schemes to interpret conceptually the spectral realization of zeros of $L$-functions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133