全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Asymptotic inference for semiparametric association models

DOI: 10.1214/07-AOS572

Full-Text   Cite this paper   Add to My Lib

Abstract:

Association models for a pair of random elements $X$ and $Y$ (e.g., vectors) are considered which specify the odds ratio function up to an unknown parameter $\bolds\theta$. These models are shown to be semiparametric in the sense that they do not restrict the marginal distributions of $X$ and $Y$. Inference for the odds ratio parameter $\bolds\theta$ may be obtained from sampling either $Y$ conditionally on $X$ or vice versa. Generalizing results from Prentice and Pyke, Weinberg and Wacholder and Scott and Wild, we show that asymptotic inference for $\bolds\theta$ under sampling conditional on $Y$ is the same as if sampling had been conditional on $X$. Common regression models, for example, generalized linear models with canonical link or multivariate linear, respectively, logistic models, are association models where the regression parameter $\bolds\beta$ is closely related to the odds ratio parameter $\bolds\theta$. Hence inference for $\bolds\beta$ may be drawn from samples conditional on $Y$ using an association model.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133