全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Regularity of invariant sets in semilinear damped wave equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Under fairly general assumptions, we prove that every compact invariant subset $\mathcal I$ of the semiflow generated by the semilinear damped wave equation \epsilon u_{tt}+u_t+\beta(x)u-\sum_{ij}(a_{ij} (x)u_{x_j})_{x_i}&=f(x,u),&& (t,x)\in[0,+\infty[\times\Omega, u&=0,&&(t,x)\in[0,+\infty[\times\partial\Omega in $H^1_0(\Omega)\times L^2(\Omega)$ is in fact bounded in $D(\mathbf A)\times H^1_0(\Omega)$. Here $\Omega$ is an arbitrary, possibly unbounded, domain in $\R^3$, $\mathbf A u=\beta(x)u-\sum_{ij}(a_{ij}(x)u_{x_j})_{x_i}$ is a positive selfadjoint elliptic operator and $f(x,u)$ is a nonlinearity of critical growth. The nonlinearity $f(x,u)$ needs not to satisfy any dissipativeness assumption and the invariant subset $\mathcal I$ needs not to be an an attractor.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133