全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

The transfer in mod-p group cohomology between Σ_p \int Σ_{p^{n-1}}, Σ_{p^{n-1}} \int Σ_p and Σ_{p^n}

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work we compute the induced transfer map: $$\bar\tau^\ast: \func{Im}(res^\ast:H^\ast(G) \to H^\ast(V)) \to \func{Im}(res^\ast: H^\ast (\Sigma_{p^n}) \to H^\ast(V))$$ in $\func{mod}p$-cohomology. Here $\Sigma_{p^{n}}$ is the symmetric group acting on an $n$-dimensional $\mathbb F_p$ vector space $V$, $G=\Sigma_{p^{n},p}$ a $p$-Sylow subgroup, $\Sigma_{p^{n-1}}\int \Sigma_{p}$, or $\Sigma_{p}\int \Sigma_{p^{n-1}}$. Some answers are given by natural invariants which are related to certain parabolic subgroups. We also compute a free module basis for certain rings of invariants over the classical Dickson algebra. This provides a computation of the image of the appropriate restriction map. Finally, if $ \xi :\func{Im}(res^\ast:H^\ast(G) \to H^\ast(V)) \to \func{Im}(res^\ast}: H^\ast(\Sigma_{p^n}) \to H^\ast(V)) $ is the natural epimorphism, then we prove that $\bar\tau^\ast=\xi$ in the ideal generated by the top Dickson algebra generator.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133