全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

The component sizes of a critical random graph with given degree sequence

DOI: 10.1214/13-AAP985

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider a critical random multigraph $\mathcal{G}_n$ with $n$ vertices constructed by the configuration model such that its vertex degrees are independent random variables with the same distribution $\nu$ (criticality means that the second moment of $\nu$ is finite and equals twice its first moment). We specify the scaling limits of the ordered sequence of component sizes of $\mathcal{G}_n$ as $n$ tends to infinity in different cases. When $\nu$ has finite third moment, the components sizes rescaled by $n^{-2/3}$ converge to the excursion lengths of a Brownian motion with parabolic drift above past minima, whereas when $\nu$ is a power law distribution with exponent $\gamma\in(3,4)$, the components sizes rescaled by $n^{-(\gamma -2)/(\gamma-1)}$ converge to the excursion lengths of a certain nontrivial drifted process with independent increments above past minima. We deduce the asymptotic behavior of the component sizes of a critical random simple graph when $\nu$ has finite third moment.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133