|
Mathematics 2010
Igusa's p-adic local zeta function associated to a polynomial mapping and a polynomial integration measureDOI: 10.1007/s00229-011-0497-y Abstract: For p prime, we give an explicit formula for Igusa's local zeta function associated to a polynomial mapping f=(f_1,...,f_t): Q_p^n -> Q_p^t, with f_1,...,f_t in Z_p[x_1,...,x_n], and an integration measure on Z_p^n of the form |g(x)||dx|, with g another polynomial in Z_p[x_1,...,x_n]. We treat the special cases of a single polynomial and a monomial ideal separately. The formula is in terms of Newton polyhedra and will be valid for f and g sufficiently non-degenerated over F_p with respect to their Newton polyhedra. The formula is based on, and is a generalization of results of Denef - Hoornaert, Howald et al., and Veys - Zuniga-Galindo.
|