全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Conformal blocks and rational normal curves

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove that the Chow quotient parametrizing configurations of n points in $\mathbb{P}^d$ which generically lie on a rational normal curve is isomorphic to $\overline{M}_{0,n}$, generalizing the well-known $d = 1$ result of Kapranov. In particular, $\overline{M}_{0,n}$ admits birational morphisms to all the corresponding geometric invariant theory (GIT) quotients. For symmetric linearizations the polarization on each GIT quotient pulls back to a divisor that spans the same extremal ray in the symmetric nef cone of $\overline{M}_{0,n}$ as a conformal blocks line bundle. A symmetry in conformal blocks implies a duality of point-configurations that comes from Gale duality and generalizes a result of Goppa in algebraic coding theory. In a suitable sense, $\overline{M}_{0,2m}$ is fixed pointwise by the Gale transform when $d=m-1$ so stable curves correspond to self-associated configurations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133