全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Equivalence of Group Actions on Riemann Surfaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

We produce for each natural number $n \geq 3$ two 1--parameter families of Riemann surfaces admitting automorphism groups with two cyclic subgroups $H_{1}$ and $H_{2}$ of orden $2^{n}$, that are conjugate in the group of orientation--preserving homeomorphism of the corresponding Riemann surfaces, but not conjugate in the group of conformal automorphisms. This property implies that the subvariety $\mathcal{M}_{g}(H_{1})$ of the moduli space $\mathcal{M}_{g}$ consisting of the points representing the Riemann surfaces of genus $g$ admitting a group of automorphisms topologically conjugate to $H_{1} $ (equivalently to $H_{2}$) is not a normal subvariety.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133