全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Sparser Johnson-Lindenstrauss Transforms

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give two different and simple constructions for dimensionality reduction in $\ell_2$ via linear mappings that are sparse: only an $O(\varepsilon)$-fraction of entries in each column of our embedding matrices are non-zero to achieve distortion $1+\varepsilon$ with high probability, while still achieving the asymptotically optimal number of rows. These are the first constructions to provide subconstant sparsity for all values of parameters, improving upon previous works of Achlioptas (JCSS 2003) and Dasgupta, Kumar, and Sarl\'{o}s (STOC 2010). Such distributions can be used to speed up applications where $\ell_2$ dimensionality reduction is used.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133