全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Proof of the monotone column permanent conjecture

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let A be an n-by-n matrix of real numbers which are weakly decreasing down each column, Z_n = diag(z_1,..., z_n) a diagonal matrix of indeterminates, and J_n the n-by-n matrix of all ones. We prove that per(J_nZ_n+A) is stable in the z_i, resolving a recent conjecture of Haglund and Visontai. This immediately implies that per(zJ_n+A) is a polynomial in z with only real roots, an open conjecture of Haglund, Ono, and Wagner from 1999. Other applications include a multivariate stable Eulerian polynomial, a new proof of Grace's apolarity theorem and new permanental inequalities.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133