全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Invariants of the harmonic conformal class of an asymptotically flat manifold

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider an asymptotically flat Riemannian manifold $(M,g)$ of dimension $n \geq 3$ with nonempty compact boundary. We recall the harmonic conformal class $[g]_h$ of the metric, which consists of all conformal rescalings given by a harmonic function raised to an appropriate power. The geometric significance is that every metric in $[g]_h$ has the same pointwise sign of scalar curvature. For this reason, the harmonic conformal class appears in the study of general relativity, where scalar curvature is related to energy density. Our purpose is to introduce and study invariants of the harmonic conformal class. These invariants are closely related to constrained geometric optimization problems involving hypersurface area-minimizers and the ADM mass. In the final section, we discuss possible applications of the invariants and their relationship with zero area singularities and the positive mass theorem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133