全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Existence of Integral $m$-Varifolds minimizing $\int |A|^p$ and $\int |H|^p$, $p>m$, in Riemannian Manifolds

DOI: 10.1007/s00526-012-0588-y

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove existence and partial regularity of integral rectifiable $m$-dimensional varifolds minimizing functionals of the type $\int |H|^p$ and $\int |A|^p$ in a given Riemannian $n$-dimensional manifold $(N,g)$, $2\leq mm$, under suitable assumptions on $N$ (in the end of the paper we give many examples of such ambient manifolds). To this aim we introduce the following new tools: some monotonicity formulas for varifolds in $\mathbb{R}^S$ involving $\int |H|^p$, to avoid degeneracy of the minimizer, and a sort of isoperimetric inequality to bound the mass in terms of the mentioned functionals.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133