全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

The Graphs Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider complete asymptotically flat Riemannian manifolds that are the graphs of smooth functions over $\mathbb R^n$. By recognizing the scalar curvature of such manifolds as a divergence, we express the ADM mass as an integral of the product of the scalar curvature and a nonnegative potential function, thus proving the Riemannian positive mass theorem in this case. If the graph has convex horizons, we also prove the Riemannian Penrose inequality by giving a lower bound to the boundary integrals using the Aleksandrov-Fenchel inequality.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133