全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

About H?lder-regularity of the convex shape minimizing λ2

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider the well-known following shape optimization problem: $$\lambda_2(\Omega^*)=\min_{\stackrel{|\Omega|=V_0} {\Omega\textrm{ convex}}} \lambda_2(\Omega),$$ where $\lambda_2(\Om)$ denotes the second eigenvalue of the Laplace operator with homogeneous Dirichlet boundary conditions in $\Om\subset\R^2$, and $|\Om|$ is the area of $\Om$. We prove, under some technical assumptions, that any optimal shape $\Omega^*$ is $\mathcal{C}^{1,\frac{1}{2}}$ and is not $\C^{1,\alpha}$ for any $\alpha>\frac{1}{2}$. We also derive from our strategy some more general regularity results, in the framework of partially overdetermined boundary value problems, and we apply these results to some other shape optimization problems.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133