全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone

Full-Text   Cite this paper   Add to My Lib

Abstract:

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that Rockafellar's constraint qualification holds. In this paper, we prove the maximal monotonicity of $A+\partial f$ provided that $A$ is a maximally monotone linear relation, and $f$ is a proper lower semicontinuous convex function satisfying $\dom A\cap\inte\dom \partial f\neq\varnothing$. Moreover, $A+\partial f$ is of type (FPV). The maximal monotonicity of $A+\partial f$ when $\intdom A\cap\dom \partial f\neq\varnothing$ follows from a result by Verona and Verona, which the present work complements.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133