全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Harmonic maps into conic surfaces with cone angles less than $2π$

Full-Text   Cite this paper   Add to My Lib

Abstract:

We prove the existence and uniqueness of harmonic maps in degree one homotopy classes of closed, orientable surfaces of positive genus, when the target has conic points with cone angles less than $2\pi$. For a cone point $p$ of cone angle less than or equal $\pi$ we show that one can minimize, uniquely, in the relative homotopy class of a homeomorphism sending a fixed point $q$ in the domain to $p$. The latter can be interpreted as minimizing maps from punctured Riemann surfaces.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133