|
Mathematics 2010
Property $(β)$ and uniform quotient mapsAbstract: In 1999, Bates, Johnson, Lindenstrauss, Preiss and Schechtman asked whether a Banach space that is a uniform quotient of $\ell_p$, $1 < p \neq 2 < \infty$, must be isomorphic to a linear quotient of $\ell_p$. We apply the geometric property $(\beta)$ of Rolewicz to the study of uniform and Lipschitz quotient maps, and answer the above question positively for the case $1
|