全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Hermite normal forms and $δ$-vector

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\delta(\Pc) = (\delta_0, \delta_1,..., \delta_d)$ be the $\delta$-vector of an integral polytope $\Pc \subset \RR^N$ of dimension $d$. Following the previous work of characterizing the $\delta$-vectors with $\sum_{i=0}^d \delta_i \leq 3$, the possible $\delta$-vectors with $\sum_{i=0}^d \delta_i = 4$ will be classified. And each possible $\delta$-vectors can be obtained by simplices. We get this result by studying the problem of classifying the possible integral simplices with a given $\delta$-vector $(\delta_0, \delta_1,..., \delta_d)$, where $\sum_{i=0}^d \delta_i \leq 4$, by means of Hermite normal forms of square matrices.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133