全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Uniqueness of reflectionless Jacobi matrices and the Denisov-Rakhmanov Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

If a Jacobi matrix $J$ is reflectionless on $(-2,2)$ and has a single $a_{n_0}$ equal to 1, then $J$ is the free Jacobi matrix $a_n\equiv 1$, $b_n\equiv 0$. I'll discuss this result and its generalization to arbitrary sets and present several applications, including the following: if a Jacobi matrix has some portion of its $a_n$'s close to 1, then one assumption in the Denisov-Rakhmanov Theorem can be dropped.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133