全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Representations and cohomology for Frobenius-Lusztig kernels

DOI: 10.1016/j.jpaa.2010.09.006

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $U_\zeta$ be the quantum group (Lusztig form) associated to the simple Lie algebra $\mathfrak{g}$, with parameter $\zeta$ specialized to an $\ell$-th root of unity in a field of characteristic $p>0$. In this paper we study certain finite-dimensional normal Hopf subalgebras $U_\zeta(G_r)$ of $U_\zeta$, called Frobenius-Lusztig kernels, which generalize the Frobenius kernels $G_r$ of an algebraic group $G$. When $r=0$, the algebras studied here reduce to the small quantum group introduced by Lusztig. We classify the irreducible $U_\zeta(G_r)$-modules and discuss their characters. We then study the cohomology rings for the Frobenius-Lusztig kernels and for certain nilpotent and Borel subalgebras corresponding to unipotent and Borel subgroups of $G$. We prove that the cohomology ring for the first Frobenius-Lusztig kernel is finitely-generated when $\g$ has type $A$ or $D$, and that the cohomology rings for the nilpotent and Borel subalgebras are finitely-generated in general.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133