全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

The Eigenvalue Problem for Linear and Affine Iterated Function Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

The eigenvalue problem for a linear function L centers on solving the eigen-equation Lx = rx. This paper generalizes the eigenvalue problem from a single linear function to an iterated function system F consisting of possibly an infinite number of linear or affine functions. The eigen-equation becomes F(X) = rX, where r>0 is real, X is a compact set, and F(X)is the union of f(X), for f in F. The main result is that an irreducible, linear iterated function system F has a unique eigenvalue r equal to the joint spectral radius of the functions in F and a corresponding eigenset S that is centrally symmetric, star-shaped, and full dimensional. Results of Barabanov and of Dranishnikov-Konyagin-Protasov on the joint spectral radius follow as corollaries.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133