全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2010 

Superatomic Boolean algebras constructed from strongly unbounded functions

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using Koszmider's strongly unbounded functions, we show the following consistency result: Suppose that $\kappa,\lambda$ are infinite cardinals such that $\kappa^{+++} \leq \lambda$, $\kappa^{<\kappa}=\kappa$ and $2^{\kappa}= \kappa^+$, and $\eta$ is an ordinal with $\kappa^+\leq \eta <\kappa^{++}$ and $cf(\eta) = \kappa^+$. Then, in some cardinal-preserving generic extension there is a superatomic Boolean algebra $B$ such that - $ht(B) = \eta + 1$, - the cardinality of the $\alpha$th level of $B$ is $\kappa$ for every $\alpha <\eta$, - and the cardinality of the $\eta$th level of $B$ is $\lambda$ Especially, $\<{\omega}\>_{{\omega}_1}\concatenation \<{\omega}_3\>$ and $\<{\omega}_1\>_{{\omega}_2}\concatenation \<{\omega}_4\>$ can be cardinal sequences of superatomic Boolean algebras.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133