全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Paramodular Cusp Forms

Full-Text   Cite this paper   Add to My Lib

Abstract:

We classify Siegel modular cusp forms of weight two for the paramodular group K(p) for primes p< 600. We find that weight two Hecke eigenforms beyond the Gritsenko lifts correspond to certain abelian varieties defined over the rationals of conductor p. The arithmetic classification is in a companion article by A. Brumer and K. Kramer. The Paramodular Conjecture, supported by these computations and consistent with the Langlands philosophy and the work of H. Yoshida, is a partial extension to degree 2 of the Shimura-Taniyama Conjecture. These nonlift Hecke eigenforms share Euler factors with the corresponding abelian variety $A$ and satisfy congruences modulo \ell with Gritsenko lifts, whenever $A$ has rational \ell-torsion.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133