全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Discrete Hilbert transforms on sparse sequences

DOI: 10.1112/plms/pdq053

Full-Text   Cite this paper   Add to My Lib

Abstract:

Weighted discrete Hilbert transforms $(a_n)_n \mapsto \sum_n a_n v_n/(z-\gamma_n)$ from $\ell^2_v$ to a weighted $L^2$ space are studied, with $\Gamma=(\gamma_n)$ a sequence of distinct points in the complex plane and $v=(v_n)$ a corresponding sequence of positive numbers. In the special case when $|\gamma_n|$ grows at least exponentially, bounded transforms of this kind are described in terms of a simple relative to the Muckenhoupt $(A_2)$ condition. The special case when $z$ is restricted to another sequence $\Lambda$ is studied in detail; it is shown that a bounded transform satisfying a certain admissibility condition can be split into finitely many surjective transforms, and precise geometric conditions are found for invertibility of such two weight transforms. These results can be interpreted as statements about systems of reproducing kernels in certain Hilbert spaces of which de Branges spaces and model subspaces of $H^2$ are prime examples. In particular, a connection to the Feichtinger conjecture is pointed out. Descriptions of Carleson measures and Riesz bases of normalized reproducing kernels for certain "small" de Branges spaces follow from the results of this paper.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133