全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Spectral properties of higher order anharmonic oscillators

Full-Text   Cite this paper   Add to My Lib

Abstract:

We discuss spectral properties of the self-adjoint operator \[ -d^2/dt^2 + (t^{k+1}/(k+1)-\alpha)^2 \] in $L^2(\mathbb{R})$ for odd integers $k$. We prove that the minimum over $\alpha$ of the ground state energy of this operator is attained at a unique point which tends to zero as $k$ tends to infinity. Moreover, we show that the minimum is non-degenerate. These questions arise naturally in the spectral analysis of Schr\"{o}dinger operators with magnetic field. This extends or clarifies previous results by Pan-Kwek, Helffer-Morame, Aramaki, Helffer-Kordyukov and Helffer.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133