全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Toric varieties and spherical embeddings over an arbitrary field

Full-Text   Cite this paper   Add to My Lib

Abstract:

We are interested in two classes of varieties with group action, namely toric varieties and spherical embeddings. They are classified by combinatorial objects, called fans in the toric setting, and colored fans in the spherical setting. We characterize those combinatorial objects corresponding to varieties defined over an arbitrary field $k$. Then we provide some situations where toric varieties over $k$ are classified by Galois-stable fans, and spherical embeddings over $k$ by Galois-stable colored fans. Moreover, we construct an example of a smooth toric variety under a 3-dimensional nonsplit torus over $k$ whose fan is Galois-stable but which admits no $k$-form. In the spherical setting, we offer an example of a spherical homogeneous space $X_0$ over $\mr$ of rank 2 under the action of SU(2,1) and a smooth embedding of $X_0$ whose fan is Galois-stable but which admits no $\mr$-form.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133