全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Combinatorial bounds on Hilbert functions of fat points in projective space

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study Hilbert functions of certain non-reduced schemes A supported at finite sets of points in projective space, in particular, fat point schemes. We give combinatorially defined upper and lower bounds for the Hilbert function of A using nothing more than the multiplicities of the points and information about which subsets of the points are linearly dependent. When N=2, we give these bounds explicitly and we give a sufficient criterion for the upper and lower bounds to be equal. When this criterion is satisfied, we give both a simple formula for the Hilbert function and combinatorially defined upper and lower bounds on the graded Betti numbers for the ideal defining A, generalizing results of Geramita-Migliore-Sabourin (2006). We obtain the exact Hilbert functions and graded Betti numbers for many families of examples, interesting combinatorially, geometrically, and algebraically. Our method works in any characteristic. AWK scripts implementing our results can be obtained at http://www.math.unl.edu/~bharbourne1/CHT/Example.html .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133