0$, every balanced bipartite graph on $2n$ vertices with bounded degree and sublinear bandwidth a..." />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Embedding into bipartite graphs

DOI: 10.1137/090765481

Full-Text   Cite this paper   Add to My Lib

Abstract:

The conjecture of Bollob\'as and Koml\'os, recently proved by B\"ottcher, Schacht, and Taraz [Math. Ann. 343(1), 175--205, 2009], implies that for any $\gamma>0$, every balanced bipartite graph on $2n$ vertices with bounded degree and sublinear bandwidth appears as a subgraph of any $2n$-vertex graph $G$ with minimum degree $(1+\gamma)n$, provided that $n$ is sufficiently large. We show that this threshold can be cut in half to an essentially best-possible minimum degree of $(\frac12+\gamma)n$ when we have the additional structural information of the host graph $G$ being balanced bipartite. This complements results of Zhao [to appear in SIAM J. Discrete Math.], as well as Hladk\'y and Schacht [to appear in SIAM J. Discrete Math.], who determined a corresponding minimum degree threshold for $K_{r,s}$-factors, with $r$ and $s$ fixed. Moreover, it implies that the set of Hamilton cycles of $G$ is a generating system for its cycle space.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133