全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

The Atiyah Patodi Singer index formula for measured foliations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $X_0$ be a compact Riemannian manifold with boundary endowed with a oriented, measured even dimensional foliation with purely transverse boundary. Let $X$ be the manifold with cylinder attached and extended foliation. We prove that the $L^2$--measured index of a Dirac type operator is well defined and the following Atiyah Patodi Singer index formula is true $$ind_{L^2,\Lambda}(D^+) = <\widehat{A}(X,\nabla)Ch(E/S),C_\Lambda> + 1/2[\eta_\Lambda(D^{\mathcal{F}_\partial}) - h^+_\Lambda + h^-_\Lambda].$$ Here $\Lambda$ is a holonomy invariant transverse measure, $\eta_{\Lambda}(D^{\mathcal{F}_{\partial}})$ is the Ramachandran eta invariant \cite{Rama} of the leafwise boundary operator and the $\Lambda$--dimensions $h^\pm_\Lambda$ of the space of the limiting values of extended solutions is suitably defined using square integrable representations of the equivalence relation of the foliation with values on weighted Sobolev spaces on the leaves.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133