全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Branching of some holomorphic representations of SO(2,N)

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we consider the analytic continuation of the weighted Bergman spaces on the Lie ball $$\mathscr{D}=SO(2,n)/S(O(2) \times O(n))$$ and the corresponding holomorphic unitary (projective) representations of SO(2,n) on these spaces. These representations are known to be irreducible. Our aim is to decompose them under the subgroup SO(1,n) which acts as the isometry group of a totally real submanifold $\mathscr{X}$ of $\mathscr{D}$. We give a proof of a general decomposition theorem for certain unitary representations of semisimple Lie groups. In the particular case we are concerned with, we find an explicit formula for the Plancherel measure of the decomposition as the orthogonalising measure for certain hypergeometric polynomials. Moreover, we construct an explicit generalised Fourier transform that plays the role of the intertwining operator for the decomposition. We prove an inversion formula and a Plancherel formula for this transform. Finally we construct explicit realisations of the discrete part appearing in the decomposition and also for the minimal representation in this family.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133