全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Subconvexity for a double Dirichlet series

DOI: 10.1112/S0010437X10004926

Full-Text   Cite this paper   Add to My Lib

Abstract:

For Dirichlet series roughly of the type $Z(s, w) = sum_d L(s, chi_d) d^{-w}$ the subconvexity bound $Z(s, w) \ll (sw(s+w))^{1/6+\varepsilon}$ is proved on the critical lines $\Re s = \Re w = 1/2$. The convexity bound would replace 1/6 with 1/4. In addition, a mean square bound is proved that is consistent with the Lindel\"of hypothesis. An interesting specialization is $s=1/2$ in which case the above result give a subconvex bound for a Dirichlet series without an Euler product.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133