全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Some new classes of complex symmetric operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

We say that an operator $T \in B(H)$ is complex symmetric if there exists a conjugate-linear, isometric involution $C:H\to H$ so that $T = CT^*C$. We prove that binormal operators, operators that are algebraic of degree two (including all idempotents), and large classes of rank-one perturbations of normal operators are complex symmetric. From an abstract viewpoint, these results explain why the compressed shift and Volterra integration operator are complex symmetric. Finally, we attempt to describe all complex symmetric partial isometries, obtaining the sharpest possible statement given only the data $(\dim \ker T, \dim \ker T^*)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133