全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Trotter-Kato product formula for unitary groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $A$ and $B$ be non-negative self-adjoint operators in a separable Hilbert space such that its form sum $C$ is densely defined. It is shown that the Trotter product formula holds for imaginary times in the $L^2$-norm, that is, one has % % \begin{displaymath} \lim_{n\to+\infty}\int^T_0 \|(e^{-itA/n}e^{-itB/n})^nh - e^{-itC}h\|^2dt = 0 \end{displaymath} % % for any element $h$ of the Hilbert space and any $T > 0$. The result remains true for the Trotter-Kato product formula % % \begin{displaymath} \lim_{n\to+\infty}\int^T_0 \|(f(itA/n)g(itB/n))^nh - e^{-itC}h\|^2dt = 0 \end{displaymath} % % where $f(\cdot)$ and $g(\cdot)$ are so-called holomorphic Kato functions; we also derive a canonical representation for any function of this class.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133