全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Qualitative properties of saddle-shaped solutions to bistable diffusion equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the elliptic equation $-\Delta u = f(u)$ in the whole $\R^{2m}$, where $f$ is of bistable type. It is known that there exists a saddle-shaped solution in $\R^{2m}$. This is a solution which changes sign in $\R^{2m}$ and vanishes only on the Simons cone ${\mathcal C}=\{(x^1,x^2)\in\R^m\times\R^m: |x^1|=|x^2|\}$. It is also known that these solutions are unstable in dimensions 2 and 4. In this article we establish that when $2m=6$ every saddle-shaped solution is unstable outside of every compact set and, as a consequence has infinite Morse index. For this we establish the asymptotic behavior of saddle-shaped solutions at infinity. Moreover we prove the existence of a minimal and a maximal saddle-shaped solutions and derive monotonicity properties for the maximal solution. These results are relevant in connection with a conjecture of De Giorgi on 1D symmetry of certain solutions. Saddle-shaped solutions are the simplest candidates, besides 1D solutions, to be global minimizers in high dimensions, a property not yet established.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133