全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the generalized boundary value problem for nonnegative solutions of $-\Delta u+g(u)=0$ in a bounded Lipschitz domain $\Gw$, when $g$ is continuous and nondecreasing. Using the harmonic measure of $\Gw$, we define a trace in the class of outer regular Borel measures. We amphasize the case where $g(u)=|u|^{q-1}u$, $q>1$. When $\Gw$ is (locally) a cone with vertex $y$, we prove sharp results of removability and characterization of singular behavior. In the general case, assuming that $\Gw$ possesses a tangent cone at every boundary point and $q$ is subcritical, we prove an existence and uniqueness result for positive solutions with arbitrary boundary trace. We obtain sharp results involving Besov spaces with negative index on k-dimensional edges and apply our results to the characterization of removable sets and good measures on the boundary of a polyhedron.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133