全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

On an inhomogeneous slip-inflow boundary value problem for a steady flow of a viscous compressible fluid in a cylindrical domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate a steady flow of a viscous compressible fluid with inflow boundary condition on the density and inhomogeneous slip boundary conditions on the velocity in a cylindrical domain $\Omega = \Omega_0 \times (0,L) \in \mathbb{R}^3$. We show existence of a solution $(v,\rho) \in W^2_p(\Omega) \times W^1_p(\Omega)$, where $v$ is the velocity of the fluid and $\rho$ is the density, that is a small perturbation of a constant flow $(\bar v \equiv [1,0,0], \bar \rho \equiv 1)$. We also show that this solution is unique in a class of small perturbations of $(\bar v,\bar \rho)$. The term $u \cdot \nabla w$ in the continuity equation makes it impossible to show the existence applying directly a fixed point method. Thus in order to show existence of the solution we construct a sequence $(v^n,\rho^n)$ that is bounded in $W^2_p(\Omega) \times W^1_p(\Omega)$ and satisfies the Cauchy condition in a larger space $L_{\infty}(0,L;L_2(\Omega_0))$ what enables us to deduce that the weak limit of a subsequence of $(v^n,\rho^n)$ is in fact a strong solution to our problem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133