全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Dimension, matroids, and dense pairs of first-order structures

DOI: 10.1016/j.apal.2011.01.003

Full-Text   Cite this paper   Add to My Lib

Abstract:

A structure M is pregeometric if the algebraic closure is a pregeometry in all M' elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of U-rank a power of omega and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding a field, while not pregeometric in general, do have an unique existential matroid. Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding a field and with an existential matroid, and we show that the corresponding theories have natural completions, whose models also have a unique existential matroid. We extend the above result to dense tuples of structures.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133