全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Flatness of Tensor Products and Semi-Rigidity for C_2-cofinite Vertex Operator Algebras I

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study properties of a C_2-cofinite vertex operator algebra of CFT type. If it is also rational and V'\cong V, then the rigidity of the tensor category of modules has been proved by Huang. When we treat an irrational C_2-cofinite VOA, the rigidity is too strong, because it is almost equivalent to be rational as we see. We introduce a natural weaker condition "semi-rigidity". Under this condition, we prove the following results. For a projective cover P of a V-module V and a finitely generated V-module M, the projective cover of M is a direct summand of the tensor product P\boxtimes M defined by logarithmic intertwining operators. Using this result, we prove the flatness property of finitely generated modules for the tensor products, that is, if 0\to A\to B\to C\to 0 is exact then so is 0\to D\boxtimes A\to D\boxtimes B\to D\boxtimes C\to 0 for any finitely generated V-modules A, B, C and D. As a corollary, we have that if a semi-rigid C_2-cofinite V contains a rational subVOA with the same Virasoro element, then V is rational.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133