全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Braided affine geometry and q-analogs of wave operators

DOI: 10.1088/1751-8113/42/31/313001

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main goal of this review is to compare different approaches to constructing geometry associated with a Hecke type braiding (in particular, with that related to the quantum group U_q(sl(n))). We make an emphasis on affine braided geometry related to the so-called Reflection Equation Algebra (REA). All objects of such type geometry are defined in the spirit of affine algebraic geometry via polynomial relations on generators. We begin with comparing the Poisson counterparts of "quantum varieties" and describe different approaches to their quantization. Also, we exhibit two approaches to introducing q-analogs of vector bundles and defining the Chern-Connes index for them on quantum spheres. In accordance with the Serre-Swan approach, the q-vector bundles are treated as finitely generated projective modules over the corresponding quantum algebras. Besides, we describe the basic properties of the REA used in this construction and compare different ways of defining q-analogs of partial derivatives and differentials on the REA and algebras close to them. In particular, we present a way of introducing a q-differential calculus via Koszul type complexes. The lements of the q-calculus are applied to defining q-analogs of some relativistic wave operators.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133