全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

How to obtain division algebras from a generalized Cayley-Dickson doubling process

Full-Text   Cite this paper   Add to My Lib

Abstract:

New families of eight-dimensional real division algebras with large derivation algebra are presented: We generalize the classical Cayley-Dickson doubling process starting with a unital algebra with involution over a field F by allowing the scalar in the doubling to be an invertible element in the algebra. The resulting unital algebras are neither power-associative nor quadratic. Starting with a quaternion division algebra D, we obtain division algebras A for all invertible scalars chosen in D outside of F. This is independent on where the scalar is placed inside the product and three pairwise non-isomorphic families of eight-dimensional division algebras are obtained. Over the reals, the derivation algebra of each such algebra A is isomorphic to $su(2)\oplus F$ and the decomposition of A into irreducible su(2)-modules has the form 1+1+3+3 (denoting an irreducible su(2)-module by its dimension). Their opposite algebras yield more classes of pairwise non-isomorphic families of division algebras of the same type. We thus give an affirmative answer to a question posed by Benkart and Osborn in 1981.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133