全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Séparation des représentations par des surgroupes quadratiques

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $\pi$ be an unitary irreducible representation of a Lie group $G$. $\pi$ defines a moment set $I_\pi$, subset of the dual $\mathfrak g^*$ of the Lie algebra of $G$. Unfortunately, $I_\pi$ does not characterize $\pi$. However, we sometimes can find an overgroup $G^+$ for $G$, and associate, to $\pi$, a representation $\pi^+$ of $G^+$ in such a manner that $I_{\pi^+}$ characterizes $\pi$, at least for generic representations $\pi$. If this construction is based on polynomial functions with degree at most 2, we say that $G^+$ is a quadratic overgroup for $G$. In this paper, we prove the existence of such a quadratic overgroup for many different classes of $G$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133