全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

A partial order on the set of prime knots with up to 11 crossings

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ be a prime knot in $S^3$ and $G(K)=\pi_1(S^3-K)$ the knot group. We write $K_1 \geq K_2$ if there exists a surjective homomorphism from $G(K_1)$ onto $G(K_2)$. In this paper, we determine this partial order on the set of prime knots with up to 11 crossings. There exist such 801 prime knots and then $640,800$ should be considered. The existence of a surjective homomorphism can be proved by constructing it explicitly. On the other hand, the non-existence of a surjective homomorphism can be proved by the Alexander polynomial and the twisted Alexander polynomial. This work is an extension of the result of \cite{KS1}.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133