全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

On the existence of dimension zero divisors in algebraic function fields defined over F_q

DOI: 10.4064/aa143-4-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let F/F_q be an algebraic function field of genus g defined over a finite field F_q. We obtain new results on the existence, the number and the density of dimension zero divisors of degree g-k in F where k is a positive integer. In particular, for q=2,3 we prove that there always exists a dimension zero divisor of degree \gamma-1 where \gamma is the q-rank of F. We also give a necessary and sufficient condition for the existence of a dimension zero divisor of degree g-k for a hyperelliptic field F in terms of its Zeta function.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133