全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Model category structures arising from Drinfeld vector bundles

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a general construction of model category structures on the category $\mathbb{C}(\mathfrak{Qco}(X))$ of unbounded chain complexes of quasi-coherent sheaves on a semi-separated scheme $X$. The construction is based on making compatible the filtrations of individual modules of sections at open affine subsets of $X$. It does not require closure under direct limits as previous methods. We apply it to describe the derived category $\mathbb D (\mathfrak{Qco}(X))$ via various model structures on $\mathbb{C}(\mathgrak{Qco}(X))$. As particular instances, we recover recent results on the flat model structure for quasi-coherent sheaves. Our approach also includes the case of (infinite-dimensional) vector bundles, and of restricted flat Mittag-Leffler quasi-coherent sheaves, as introduced by Drinfeld. Finally, we prove that the unrestricted case does not induce a model category structure as above in general.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133