全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Estimating the joint distribution of independent categorical variables via model selection

DOI: 10.3150/08-BEJ155

Full-Text   Cite this paper   Add to My Lib

Abstract:

Assume one observes independent categorical variables or, equivalently, one observes the corresponding multinomial variables. Estimating the distribution of the observed sequence amounts to estimating the expectation of the multinomial sequence. A new estimator for this mean is proposed that is nonparametric, non-asymptotic and implementable even for large sequences. It is a penalized least-squares estimator based on wavelets, with a penalization term inspired by papers of Birg\'{e} and Massart. The estimator is proved to satisfy an oracle inequality and to be adaptive in the minimax sense over a class of Besov bodies. The method is embedded in a general framework which allows us to recover also an existing method for segmentation. Beyond theoretical results, a simulation study is reported and an application on real data is provided.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133