全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Primary decomposition and the fractal nature of knot concordance

DOI: 10.1007/s00208-010-0604-5

Full-Text   Cite this paper   Add to My Lib

Abstract:

For each sequence of polynomials, P=(p_1(t),p_2(t),...), we define a characteristic series of groups, called the derived series localized at P. Given a knot K in S^3, such a sequence of polynomials arises naturally as the orders of certain submodules of the sequence of higher-order Alexander modules of K. These group series yield new filtrations of the knot concordance group that refine the (n)-solvable filtration of Cochran-Orr-Teichner. We show that the quotients of successive terms of these refined filtrations have infinite rank. These results also suggest higher-order analogues of the p(t)-primary decomposition of the algebraic concordance group. We use these techniques to give evidence that the set of smooth concordance classes of knots is a fractal set. We also show that no Cochran-Orr-Teichner knot is concordant to any Cochran-Harvey-Leidy knot.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133