全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Simplicity of a vertex operator algebra whose Griess algebra is the Jordan algebra of symmetric matrices

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $r \in \BC$ be a complex number, and $d \in \BZ_{\ge 2}$ a positive integer greater than or equal to 2. Ashihara and Miyamoto introduced a vertex operator algebra $\Vam$ of central charge $dr$, whose Griess algebra is isomorphic to the simple Jordan algebra of symmetric matrices of size $d$. In this paper, we prove that the vertex operator algebra $\Vam$ is simple if and only if $r$ is not an integer. Further, in the case that $r$ is an integer (i.e., $\Vam$ is not simple), we give a generator system of the maximal proper ideal $I_{r}$ of the VOA $\Vam$ explicitly.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133