全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

K-theory Schubert calculus of the affine Grassmannian

DOI: 10.1112/S0010437X09004539

Full-Text   Cite this paper   Add to My Lib

Abstract:

We construct the Schubert basis of the torus-equivariant K-homology of the affine Grassmannian of a simple algebraic group G, using the K-theoretic NilHecke ring of Kostant and Kumar. This is the K-theoretic analogue of a construction of Peterson in equivariant homology. For the case G = SL_n, the K-homology of the affine Grassmannian is identified with a sub-Hopf algebra of the ring of symmetric functions. The Schubert basis is represented by inhomogeneous symmetric functions, called K-k-Schur functions, whose highest degree term is a k-Schur function. The dual basis in K-cohomology is given by the affine stable Grothendieck polynomials, verifying a conjecture of Lam. In addition, we give a Pieri rule in K-homology. Many of our constructions have geometric interpretations using Kashiwara's thick affine flag manifold.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133